Neutron-Encoded Mass Signatures for Quantitative Top-Down Proteomics∥
نویسندگان
چکیده
The ability to acquire highly accurate quantitative data is an increasingly important part of any proteomics experiment, whether shotgun or top-down approaches are used. We recently developed a quantitation strategy for peptides based on neutron encoding, or NeuCode SILAC, which uses closely spaced heavy isotope-labeled amino acids and high-resolution mass spectrometry to provide quantitative data. We reasoned that the strategy would also be applicable to intact proteins and could enable robust, multiplexed quantitation for top-down experiments. We used yeast lysate labeled with either (13)C6(15)N2-lysine or (2)H8-lysine, isotopologues of lysine that are spaced 36 mDa apart. Proteins having such close spacing cannot be distinguished during a medium resolution scan, but upon acquiring a high-resolution scan, the two forms of the protein with each amino acid are resolved and the quantitative information revealed. An additional benefit NeuCode SILAC provides for top down is that the spacing of the isotope peaks indicates the number of lysines present in the protein, information that aids in identification. We used NeuCode SILAC to quantify several hundred isotope distributions, manually identify and quantify proteins from 1:1, 3:1, and 5:1 mixed ratios, and demonstrate MS(2)-based quantitation using ETD.
منابع مشابه
Online Hydrophobic Interaction Chromatography-Mass Spectrometry for Top-Down Proteomics.
Recent progress in top-down proteomics has led to a demand for mass spectrometry (MS)-compatible chromatography techniques to separate intact proteins using volatile mobile phases. Conventional hydrophobic interaction chromatography (HIC) provides high-resolution separation of proteins under nondenaturing conditions but requires high concentrations of nonvolatile salts. Herein, we introduce a s...
متن کاملTop-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer.
Top-down proteomics, the analysis of intact proteins (instead of first digesting them to peptides), has the potential to become a powerful tool for mass spectrometric protein characterization. Requirements for extremely high mass resolution, accuracy, and ability to efficiently fragment large ions have often limited top-down analyses to custom built FT-ICR mass analyzers. Here we explore the hy...
متن کاملMass graphs and their applications in top-down proteomics
Although proteomics has made rapid progress in the past decade, researchers are still in the early stage of exploring the world of complex proteoforms, which are protein products with various primary structure alterations resulting from gene mutations, alternative splicing, post-translational modifications, and other biological processes. Proteoform identification is essential to mapping proteo...
متن کاملEfficient Interpretation of Tandem Mass Tags in Top-Down Proteomics
Mass spectrometry is the major analytical tool for the identification and quantification of proteins in biological samples. In so-called top-down proteomics, separation and mass spectrometric analysis is performed at the level of intact proteins, without preparatory digestion steps. It has been shown that the tandem mass tag (TMT) labeling technology, which is often used for quantification base...
متن کاملMass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics
Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs) and DNA methylation, which act in a concerted manner to enforce a specific "chromatin landscape", with a regulatory effect on gene express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 86 شماره
صفحات -
تاریخ انتشار 2014